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SUMMARY 
 

Sustained device scaling into the nanometer regime faces several hurdles. 
Manufacturing difficulties yield devices with parameter variations and since these devices 
are likely to operate close to the thermal limit, they are susceptible to perturbations due to 
noise. Clearly, current circuit design methodologies are inadequate to design robust 
circuits in the presence of these perturbations, since they depend on the devices with 
deterministic behavior. To design robust circuits and architecture in the presence of this 
(inevitable) statistical behavior at the device level, it has been speculated that a shift in the 
design paradigm—from the current day deterministic designs to statistical or probabilistic 
designs of the future—would be necessary. 

Motivated by this necessity and in a departure from conventional approaches to 
modeling and characterizing the behavior of CMOS devices and switches deterministically, 
we provided an explicit probabilistic characterization of the behavior of computing 
switches through a novel probabilistic CMOS (PCMOS) technology. In our research work, 
we have addressed this issue of probabilistic design at several levels, from foundational 
models to devices, circuits, and practical system-on-a-chip architectures which leverage 
PCMOS technology for applications from the cognitive and embedded domains. In the 
architectural aspect of our work and in a first-of-a-kind demonstration, we were able to 
establish that probabilistic algorithms can simultaneously yield improvements not only in 
terms of the energy consumed but also in terms of the performance (or running-time) 
quantified through the energy-performance project (EPP) metric. 

Additionally, this work also characterized an explicit relationship between the 
probability p with which the CMOS switch computes correctly, and its associated physical 
attributes such as the energy consumed by each switching step across technology 
generations. These characterizations were extended into PCMOS laws governing the 
behavior of such devices and switching. There laws were also validated across various 
technology generations via simulations as well as physical measurements of PCMOS 
inverters. On the other hand, we also performed an analysis and optimization of energy, 
performance, and probability of PCMOS circuits. We showed the design trade-offs between 
energy, performance, and p of PCMOS gates using analytical models of energy, 
propagation delay, and p. 

When applied to the digital signal processing (DSP) domain, the resulting error in the 
output of a probabilistic arithmetic primitive, such as an adder for example, manifests as 
degradation in the signal-to-noise ratio (SNR). In return for this degradation that is enabled 
by our probabilistic arithmetic primitives—degradation visually indistinguishable from an 
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image reconstructed using conventional deterministic approaches—significant energy 
savings and performance gains are shown to be possible per unit of SNR degradation. 
These savings stem from a novel method of voltage scaling, which we refer to as biased 
voltage scaling (or BIVOS), that is one of the major technical innovations on which our 
probabilistic designs are based. 
Historically, probability and statistics have played a central role in characterizing the 
behavior of physical systems, and in enabling significant technological advances. For 
example, starting with the foundations laid by historical figures such as Clausiuns [12] and 
Carnot [5], classical thermodynamics was revolutionized by giants such as Maxwell [28], 
Boltzmann [4] and Gibbs [18] through the introduction of probability into considerations 
involving the irreversibility implied by the celebrated “second law.” Moving a century 
forward in history and considering the information revolution matching if not surpassing 
the industrial revolution associated with thermodynamics, again, deterministic 
considerations prevailed. Thus, the profound foundations due to Turing, and its pragmatic 
realization characterized by von Neumann [47] and engineered by Eckert and Mauchly 
[21], resulted in computers whose behavior is error free, at least in intention. This changed 
in a dramatic turn of events, best described by Schwartz [40] who commented on the 
(then) revolutionary idea of “randomized” or probabilistic algorithms: “The startling 
success of the Rabin-Strassen-Solovay (see Rabin [38]) algorithm, together with the 
intriguing foundational possibility that axioms of randomness may constitute a useful 
fundamental source of mathematical truth independent of, but supplementary to, the 
standard axiomatic structure of mathematics (see Chaitin and Schwartz [6]), suggests that 
probabilistic algorithms ought to be sought vigorously.” 

While these probabilistic algorithms have influenced the field of computing in the 
broadest sense notably through methods for computer security based on cryptography, the 
underlying “hardware” that serves as a platform for computing has remained 
“deterministic”. However, as the feature sizes of CMOS transistors—the atomic constructs 
in modern computing—approach the low nanometer range, “probabilistic” behaviors are a 
serious and potentially unavoidable consideration. Thus, characterizing the behavior of 
transistors in a probabilistic setting is crucial to understanding and enabling the design of 
computing platforms in the future. We believe that the laws of PCMOS that we derived 
through this work constitute an important step in this direction and provide a practical 
foundation for realizing highly efficient probabilistic architectures. In this context, through 
PCMOS based architectural designs, curiously, noise which is viewed as an impediment 
within the context of technology scaling can in fact be turned into an asset. By managing it 
carefully, it can be used to derive significant savings in the energy-performance sense. 
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CHAPTER 1 

 
INTRODUCTION 

 
This report presents the research work performed under the following four main tasks 
entitled: 

•  Power Aware Computing Through Management of Computational Entropy 
•  High Productivity Embedded Computing Technologies 
•  Study in Reverse Engineering of Legacy Applications 
•  Software Standards and Techniques for Cognitive and Commodity Computing Systems 

We will now introduce the scope of each of these tasks in the subsequent sections. 
 
 

1.1  Power Aware Computing Through Management of Computational 
Entropy 

 
In this research work, we innovated models of computing for energy-aware algorithm 
design and analysis, for the first time, based on the following thesis: The computational 
technique referred to as randomization yielding probabilistic algorithms, now ubiquitous 
to the mathematical theory of probabilistic algorithm design and analysis, when 
interpreted as a physical phenomenon through classical statistical thermodynamics, yields 
to energy savings that decrease with the probability p with which each primitive 
computational step is guaranteed to be correct (or, equivalently, increase with the 
probability of error, (1 − p)). 

As a result of this research work, we innovated probabilistic CMOS or PCMOS 
technology, as a promising approach to addressing the CMOS device scaling challenges 
and as a dramatic shift from previous work. Devices based on this technology, where 
noise is harnessed as a resource to implement CMOS devices exhibiting probabilistic 
behavior, are guaranteed to compute correctly with a probability p. Here, p is a design 
parameter; and by design, the devices are expected to compute incorrectly with a 
probability (1 − p). The foundations of PCMOS technology are rooted in physics of 
computation, algorithms and information theory. 

Earlier, using techniques derived from physics of computation and information theory, 
we showed that the thermodynamic cost of computing a bit of information is directly 
related to its probability p of being correct [32]. This proof uses purely entropic arguments 
derived from the second law of thermodynamics [33]. Further, using an abstract model of 
computation, the RABRAM [32], and using the example of the distinct vector problem [32], 
we demonstrated that such energy savings at the switching level, can be harnessed at the 
application level to construct a probabilistic algorithm (the value amplification algorithm 
[32]) that is more (energy) efficient than the best possible deterministic algorithm.  

While the work mentioned above demonstrates the energy efficacy and utility of 
probabilistic behavior in abstract computational models, the foundational principles were 
also extended into the CMOS domain through a systematic characterization of a PCMOS 
device [10, 11, 25, 26, 27]. This characterization involves the study of the relationship 
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between the probability p of reliable operation, the noise level and the switching energy. 
Further, this relationship (captured by the two PCMOS laws) was verified through 
simulations as well as measurements of PCMOS devices fabricated in TSMC 0.25μm and 
AMI 0.5μm processes. Through analytical modeling, simulations, and measurements of 
fabricated PCMOS switches, we showed that, while devices based on PCMOS technology 
exhibit probabilistic behavior due to low-voltage operation and noise susceptibility, they 
achieve extreme energy savings in return. Further, we demonstrated the utility of PCMOS 
technology to computing platforms by studying application specific architectures that can 
not only harness PCMOS technology to implement real world applications, but also can 
lead to extremely efficient implementations—both in terms of energy measured in Joules, 
as well as performance (running time) measured in seconds, simultaneously captured by 
the energy x performance metric—when compared to conventional CMOS based designs. 
The device that we study is a PCMOS based inverter, ubiquitous to digital design and a key 
building block used in probabilistic applications. In the context of a probabilistic system-
on-a-chip (PSOC), we demonstrated the utility and benefits of PCMOS based architectures 
in implementing probabilistic applications such as pattern recognition, optimization, 
classification, patient monitoring, and Windows printer troubleshooting through 
randomized neural networks [16, 15], probabilistic cellular automata [14], hyper-
encryption [13], and Bayesian inferencing [39, 37, 3] (see our publications [7, 9]). 

Besides the aforementioned probabilistic applications, we also showed the utility and 
benefits of PCMOS based probabilistic computing in the context of error-tolerant 
applications, such as synthetic aperture radar (SAR) imaging and video decoding (see [17, 
1]). Here, through the use of probabilistic arithmetic, device-level bit errors—which 
translate into image quality measured through SNR at the application-level—can be 
mitigated and traded for energy savings with minimal impact on application quality [17]. 

We will describe all of the work done introduced above in the following sections of the 
report: see Chapter 2.1 and Chapter 3.1. 
 
 

1.2  High Productivity Embedded Computing Technologies 
 
This work studied key challenges facing development and deployment of heterogeneous 
embedded systems. In particular, the program addresses productivity challenges that 
preclude realization of the anticipated advantages of heterogeneous embedded computing 
systems (HECS). Our effort provides a (parametric) system model to characterize a mix of 
custom processors, polymorphous architectures, and domain accelerator extensions. 
Architecture space modeling, design space exploration and productivity enhancing 
optimizations for HECS are the key steps involved in this work. 

We will describe the work done under this task in the following sections of the report: 
see Chapter 2.2 and Chapter 3.2. 
 
 

1.3 Study in Reverse Engineering of Legacy Applications 
 
In parallel with the research work on HECS (see Section 1.2), we performed a proof-of-
concept study in reverse engineering of legacy applications. Specifically, legacy high-level 
languages tend to be in formats and forms that are not readily amenable to human 
interpretation, redesign and deployment. This task involves a survey on what and where 
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such legacy applications are, the hurdles of legacy code, the state-of-the-art approaches to 
deal with legacy code, as well as a constructive plan for addressing hurdles through 
cognitive and probabilistic techniques. 

We will describe the work done under this task in the following sections of the report: 
see Chapter 2.3 and Chapter 3.3. 
 
 

1.4 Software Standards and Techniques for Cognitive and Commodity 
Computing Systems 

 
From October 2004 through August 2006, research was conducted in software standards 
and techniques for heterogeneous computing systems. This research focused on two sub-
tasks: 

(1) Assessing the need and planning for a potential “Living Framework Forum” (LFF) 
software architecture task for the DARPA Architectures for Cognitive Information 
Processing (ACIP) program. 

(2) Development, testing, and evaluation of an implementation of the PCA SVM API 
(Polymorphous Computing Architectures (PCA) Stream Virtual Machine (SVM) 
application programming interface (API)) for commodity graphical processing units 
(GPUs). 

We will describe the work done under each of these sub-tasks in the following sections 
of the report: see Chapter 2.4 and Chapter 3.4. 
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CHAPTER 2 
 

METHODOLOGY 
 

2.1 Power Aware Computing Through Management of Computational 
Entropy 

 
Our work on energy aware computing through probabilistic switching took a different 
view from existing approaches by interpreting probability to be a byproduct of a physical 
phenomenon, ubiquitous to nature. In contrast to the universal view, wherein noise is 
viewed as an impediment, our approach took the diametrically opposed view of viewing it 
as a resource as an aid to achieving low-energy probabilistic devices and computing. Thus, 
most devices based on CMOS or other physical media are, by their very nature, unstable, 
noisy or, from our perspective, inherently probabilistic. In the sequel, we will first present 
our switch-based gate constructions and methodology developed for building energy 
aware networks for computing, using probabilistic bits (PBITs). 
 
2.1.1 A switch and switching 
 
Starting with an informal introduction, as shown in Figure 1, each switch sw has (up to) 
two alternate choices for “input values” as well as “enabling signals”. Each input value 
and enabling signal of sw is in turn the output of a distinct switch (from the set of all 
switches, SW), sw′ and sw′′ in the example. The outputs of switch sw′ are identified with 
the input value in1 and the input enabling signal enablein1, whereas the outputs of sw′′ are 
identified with in2 and enablein2. Any switch sw in turn has two possible (mutually 
exclusive) enabling signals as output denoted by enableout1 and enableout2, as well a 
single output value out. 

During the entire lifetime of a switch sw, each of its enabling signals enableini, i∈{1, 2}, 
is “associated with” exactly one inj, j ∈{1, 2}. Subsequently, these associations will be 
formalized as “switching relationships”. As shown in Figure 1, enablein1 is associated with 
in1 and similarly, enablein2 is associated with in2; in general, all four possible associations 

 

 
 

Figure 1: The inputs to a switch 
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Figure 2: Symbols for inputs and outputs of a switch 
 
are allowed. In any legal switching of sw, exactly one of its two enabling signals must be 
“active”, indicated by associating the value 1 with it. Finally, in this example, switch sw 
produces an output value as a function of in1 whenever enablein1 is active, whereas it 
produces an output value as a function of in2 whenever enablein2 is active where each 
switch sw realizes one of the four possible 1-bit functions (i.e., identity, complement, 0 
constant, and 1 constant). 

To further understand switching, let us suppose that enablein1 = 1. Recall from Figure 1 
that the association or switching relationship between enablein1 and in1 implies that 
whenever enablein1 = 1, out is determined by in1. In this case, sw now switches and 
produces an output using function f. 

Given a switch sw with an associated function f, a switching (step) is defined as 
follows: 

1. z = Γ and y1 = y2 = 0 whenever both its input enabling signals w1 and w2 have an 
identical value. 

2. Whenever exactly one input enabling signal say wi = 1 (and wi′ = 0 for i ≠ i′)          
< wi, xj > is a valid switching relationship, 

(a) if xj = 0 then z = f(0), y1 = z and y2 = z  

(b) if xj = 1 then z = f(1), y1 = z and y2 = z  
Let f(x) = z be the deterministic switching realized by sw. A probabilistic switching 

with a probability parameter p ≥ ½ is defined to be f(x) = z with a probability p and f(x) = z  
with probability (1 − p). 

As illustrated in Figure 3, the four deterministic one bit switching functions (Figure 
3(a)) have a probabilistic counterpart (Figure 3(b)) with an explicit probability parameter 
(probability of correctness) p. Of these, the two constant functions are trivial and the 
others are nontrivial. We consider an abstract probabilistic switch sw to be the one which 
realizes one of these four probabilistic switching functions. Such elementary probabilistic 
switches are composed to realize primitive Boolean functions, such as AND, OR, NOT 
functions. 
 
2.1.2 Composing switches 
 
To develop structures meant to realize entire computations, we identify three types of 
switches: INPUT-SWITCH, OUTPUT-SWITCH and COMPUTE-SWITCH as shown in Figure 4. 
An INPUT-SWITCH sw1 has no predecessors and drives at least one switch of type 
COMPUTE-SWITCH or of type OUTPUT-SWITCH. A switch such as sw2 in our example, which 
is a COMPUTE-SWITCH, is driven by a switch sw1 which is either an INPUT-SWITCH or a 
COMPUTE-SWITCH.  A  COMPUTE-SWITCH  can in turn drive one or more switches that  are 
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Figure 3: (a) Deterministic one bit switching functions (b) Their probabilistic counterparts 
with probability parameter (probability of correctness) p 
 

 
Figure 4: Three types of switches 

 
either of type COMPUTE-SWITCH or of a type OUTPUT-SWITCH. In our example, COMPUTE-
SWITCH sw2 drives sw4 which is an OUTPUT-SWITCH; an output switch has no successors 
and is driven by at least one switch of type INPUT-SWITCH or COMPUTE-SWITCH. 

A network of switches is a connected directed acyclic graph N = (SW,WIRES) such that 
the vertices are switches, the edges are wires and the switches that are of the type OUTPUT-
SWITCH as well as those of type COMPUTE-SWITCH are all well-connected. As an example, 
a network computing the logical AND function is sketched in Figure 5(a). Whereas 
switches sw1, sw2 are input switches, switches sw3, sw4 are compute switches 
(implementing the complement function) whereas switches sw5 and sw6 are output 
switches; sw5 is the rejecting switch and sw6 is the accepting switch. Every switch in this 
network, unless it is an INPUT-SWITCH, is well connected, and the network is directed and 
acyclic. In Figure 5(b), we show the crucial relationships between the input values to sw3 
and sw4, and their output and enabling signals in a “truth-table-like” structure. 

Until now, we have briefly introduced our methodology to understand switching and 
networks. The details of our methodology can be found in our publication [33]. We have 
also included the concept of probabilistic switching with plausible device realizations to 
save energy in our patent application [35]. In [35], we showed an introverted switch in 
probabilistic designs as a basis for energy savings and for dealing with the increasing and 
significant challenge posed by static dissipation due to leakage. 

The subsequent sections present the details of PCMOS technology, where our 
foundational principles outlined above are extended into the CMOS domain through 
systematic characterization of PCMOS devices and architectures derived from such devices. 
 
2.1.3 Inverter realization of a probabilistic switch in CMOS 
 
In this section, we show our characterization of a switch rendered probabilistic due to 
thermal noise.  We  first  explain a CMOS inverter realization of a probabilistic switch.  We 
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Figure 5: A deterministic 2-canonical network resolving the AND function where the 
compute-switches sw3 and sw4 with input switching relationships <x3,1,w3,1> and 
<x3,2,w3,2> as well as wires <y1,1,w3,1>, <z1,x3,1>, <y3,2,w4,1>, <z2, x4,2> drive the accepting 
switch sw6 and rejecting switch sw5 
 
then develop an analytical model and the associated laws of PCMOS technology, crucial to 
understanding the probabilistic behavior of a PCMOS switch, and then validate the model 
via HSpice simulations. 

A CMOS inverter is a digital gate that executes the inversion function with one input and 
one output. The switching in this case is the invocation of the inversion function, which, in 
the context of the CMOS inverter, corresponds to the flow of the switching current through 
the output capacitance of the inverter. For a deterministic inverter, Y(t2) = X(t1), where X 
and Y denote the binary values of the input and the output of the inverter, respectively, t2 
denotes the point in time when the switching ends and t1 denotes the point in time when 
the switching starts. For a probabilistic inverter, on the other hand,  

 ( ) 1
2

1

( ) with probability
( ) with probability (1– )

X t p
Y t

X t p
⎧⎪= ⎨
⎪⎩

  , (25.1) 

wherein p denotes the probability of correctness, such that 1/2 < p < 1. In Equation (1), the 
probability p results from the noise coupled to the CMOS inverter.  
Following Stein [43], noise can be modeled as being coupled to the output of the inverter 
as shown in Figure 6(a). To understand how noise induces probabilistic behavior, we first 
consider the transfer characteristics of an ideal inverter shown in Figure 6(b). As shown in 
the figure, a single switching step of an ideal deterministic inverter is instantaneous and 
occurs at a value of Vdd/2. The binary values of 0 and 1 correspond to a (measured) output 
voltage in the interval (−∞, Vdd/2) and [Vdd/2, +∞), respectively. However, noise that is 
present at the output node interacts with the voltage values representing a deterministic 0 
or 1 corresponding to the output signal. Noise which is characterized by a Gaussian 
distribution with a standard variation σ is superimposed on the output signal, and therefore, 
it destabilizes the output of the inverter, causing incorrect switchings. To characterize the 
erroneous behavior and establish a relationship between noise magnitude, signal 
magnitude and the probability of correctness, p, we refer to the digital 0 and 1 regions 
shown in Figure 6(c). This figure corresponds to the case when the inverter is coupled 
with thermal noise at its output (see Figure 6(a)). The thermal noise has a Gaussian 
distribution with a standard deviation of σ, also referred to as the RMS value of noise. Here,  
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Figure 6: (a) An inverter coupled with thermal noise at its output (b) An idealized inverter 
transfer curve (c) Probabilistic behavior determined by thermal noise coupled at the output 
of the inverter 
 
the curve on the left (right) has a mean of 0V (1V) and it corresponds to the case when the 
input Vin is 1 (0). Thus, with an output value of 1 for example—measured to be Vdd in the 
ideal case—the instantaneous value will be determined by the noise distribution. Thus, 
while the output value ought to be Vdd, because of additive noise, it can easily be in the 
interval (−∞,Vdd/2) inherently yielding a value of 0. In Figure 6(c), the probability of error 
corresponding to an output value of 1 being erroneously treated as 0 is equal to the area A, 
and that of 0 being erroneously treated to be 1 corresponds to the area B. Note that, from 
symmetry, A=B = (1 − p), where p is probability of being correct (or, equivalently, (1 − p) 
is probability of error) in both cases. 

To understand the behavior of a probabilistic inverter, we compare the output 
waveforms of a deterministic inverter with that of a probabilistic inverter for the same 
input signal. The input signal waveform is shown in Figure 7(a). The corresponding output 
voltage waveform of a deterministic inverter is shown in Figure 7(b), and the 
corresponding output of a probabilistic inverter is shown in Figure 7(c). In Figure 7(c), the 
inverter is coupled with thermal noise at its input and it is designed to switch correctly 
with a probability parameter p = 0.87. Because of the noise, the output voltage of the 
inverter undergoes transitions to binary 0, while it should be at binary 1, and vice versa. 
Such a probabilistic inverter is of great value and we will present the utility of such a 
switch in Section 2.1.4, wherein the benefits in terms of energy savings and performance 
improvements are studied via an example application with probabilistic workload. 

Note that in Figure 7, the output voltage level for a deterministic inverter is higher (1V) 
than it is for a probabilistic inverter (0.8V). This is because, the probabilistic behavior for 
the inverter is realized through varying two parameters (1) the noise amount coupled on 
the inverter characterized as its RMS value in Volts, and (2) supply voltage Vdd of the 
inverter, and in Figure 7(c), the supply voltage value of 0.8V corresponds to a probability 
value p = 0.87 with a noise RMS value of 0.4V. The details of the effects of the two 
parameters, the amount of noise and the supply voltage, will constitute the two laws and 
are detailed in the following sections. Briefly, since the probability p results due to noise 
destabilizing the inverter shown in Figure 6(a), the probability parameter p is decreased 
either by increasing the noise (RMS) magnitude, or by decreasing the operating supply 
voltage of the inverter, Vdd. As a result, incorrect switchings occur at the output of the 
inverter as shown in Figure 7(c). 

 

σ 
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Figure 7: (a) Input voltage of a deterministic CMOS inverter (b) Output voltage of a 
deterministic CMOS inverter (c) Output voltage of a probabilistic CMOS inverter with 
probability parameter p = 0.87 for the same input 
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Figure 8: A “SoC-like” architecture for realizing low-energy computing architectures 
using PCMOS 
 

With this as background, we will present the result of the analytical model of the 
PCMOS inverter and then the associated laws deduced from this model in Chapter 3.1. 

Whereas the methodology discussed above was based on noise being freely available, 
due to its limited availability in reality, the practical realization of a PCMOS inverter also 
needs amplifier circuitry, which incurs additional energy and time costs. In evaluating the 
architecture level benefits of PCMOS switches for the currently available technologies, we 
also consider the cost of amplification. The particular low-energy subthreshold amplifier’s 
structure and its attributes can be found in the work of Cheemalavagu, Korkmaz, Palem, 
Akgul, and Chakrapani [11]. In the next section, we use these PCMOS switches as a 
building block, and demonstrate the architecture level gains of PCMOS based system-on-a-
chip implementations in the context of an application with a probabilistic workload. 
 
2.1.4 Realizing low-energy PSoC architectures 
 
In order to better understand the energy and performance benefits of PCMOS technology 
that can be derived at the architectural level, we propose a system-on-a-chip (SoC) 
architecture as shown in Figure 8. PCMOS is utilized in the design of an application-
specific co-processor, and the probabilistic content of the computation is executed on this 
co-processor. Thus, we envision early yet significant adoption of PCMOS to be application 
specific, and evolving to a context that is domain specific; for details about the concept of 
a SoC and further details about custom-fit processors, please see Lyonnard et al. [29], 
Tensilica [49] and Wang et al. [48]. As shown in the figure, a low-energy host processor is 
used to compute the deterministic components of the application. A typical host processor 
will be a StrongARM [45], a MIPS [42] or an equivalent low-energy embedded processor, 
coupled to the co-processor through the system bus. Thus, the communication between the 
host and the co-processor is through memory mapped I/O. The host could also be a 
custom-fit processor in its own right; thus, we also consider a host designed as a custom 
application-specific integrated circuit (ASIC) and analyze the impact of the efficiency of 
the host on the overall benefits of PCMOS. In Section 2.1.4.1 below, we introduce the 
metrics for evaluating PCMOS based architectures, which will also serve as a basis for 
comparison with conventional CMOS based architectures. 
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2.1.4.1   Metrics for evaluating PCMOS based architectures 
 
The two basic characteristics of interest in realizing efficient application-specific SoC 
architectures are the performance (typically the running-time of the application) and its 
energy consumption (or its derivative, power). To compare the efficiency of conventional 
SoC architectures, and PCMOS based SoC architectures, we introduce metrics based on 
these criteria. Our primary metric for consideration is the energy-performance product of 
an architecture which implements a particular application. 
Energy-Performance Product (EPP): EPP is defined as the product of the application 
level energy (measured in Joules) and performance (measured in number of cycles). 

Given the EPP of two alternate implementations—for example, the case when the entire 
algorithm is implemented as software executing on the host referred to as the baseline, 
compared to the case where the deterministic part of the algorithm is executed on the host 
with the probabilistic part executing on a PCMOS co-processor—they can be compared by 
computing the ratio of their individual EPP values. Since our goal is to compare the energy 
and performance gains realized through using PCMOS technology, we refine this notion 
and define the metric: EPP gain, which is denoted as Γ, and defined as follows. 
EPP Gain (Γ ): EPP gain, denoted Γ, is the ratio of the EPP of the baseline to the EPP of a 
particular implementation. The EPP gain of a particular implementation I is determined as 

B B
I

I I

Energy Time
Energy Time

×
Γ =

×
             (2) 

In Equation 2, the baseline denoted as B refers to the case when the entire application is 
realized using software on the host (for example, a StrongARM sa-1100 processor) only, 
without recourse to a co-processor. Thus, the numerator of ΓI is derived for the case where 
the entire application executes deterministically on the host. The corresponding 
architecture realization is shown in Figure 9(a). While the baseline and hence the 
numerator of the EPP gain metric has been a purely deterministic realization of a 
deterministic algorithm corresponding to the case shown in Figure 9(a), in the context of 
applications that do not implement a deterministic algorithm, the software based 
emulation (illustrated in Figure 9(b)) shall serve as the baseline. We adopt this approach 
whenever the deterministic realizations do not exist or are impractically inefficient. In this 
case, the probabilistic component of the application is “emulated” using pseudo-random 
bit generation in software (as shown in Figure 9(b)). 

A further refinement of this approach is to consider a co-processor (Figure 9 (c)) 
wherein the probabilistic parts of the application is emulated using a customized co-
processor—typically using a pseudo-random number generator (PRNG, see Park and Miller 
[36]). Finally, as shown in Figure 9(d), the co-processor and hence the probabilistic 
computational component is realized using PCMOS. These cases (shown in Figures 9(a), 
9(b), 9(c), and 9(d)) capture all reasonable alternate implementation scenarios against 
which the benefit of PCMOS technology is compared. 

 
2.1.4.2   Experimental methodology 

 
The utility of PCMOS technology at the application level for computing platforms will be 
demonstrated by using the metrics (described in Section 2.1.4.1) and by considering a 
wide range of alternate implementations illustrated in Figure 9. Our experimental 
methodology,  described herein  is  used  to  characterize  these  alternate implementations  
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Figure 9: The four possible realizations of an application using an SoC platform wherein 
(a) a deterministic application is executed entirely on the host, (b) a probabilistic 
application is executed entirely on the host, using an emulation based on pseudo-random 
bits generated using software, (c) the emulation is realized using a custom CMOS co-
processor, and (d) a functionally identical PCMOS co-processor is used to realize the 
probabilistic components of the application 
 
based on the metrics introduced. The primary metric of interest, the EPP metric, involves 
performance and energy estimation for each of the cases considered. 
Performance Estimation: The performance of PCMOS and CMOS based SoC 
implementation and that of the baseline (where there is no co-processor) is estimated by 
using a modified version of the impact simulator of the Trimaran [8, 46] infrastructure. 
The modified simulator measures the performance of an application (the cycle count) 
executing on the StrongARM SA-1100 host. In addition, the simulator records a trace of 
the activity of the PCMOS and CMOS co-processors. This is combined with the performance 
models of co-processors, typically obtained through HSpice simulations, to yield 
performance in terms of execution time. 
Energy Estimation: Three components of energy consumption are estimated. The energy 
consumed by the host, the energy consumed by the PCMOS (CMOS) based co-processor(s), 
and the energy cost of communication between the host and the co-processor(s). Since the 
co-processors are memory mapped, communication is through load-store instructions 
executed on the host. To quantify the energy consumed by the SA-1100 host, the 
JouleTrack model introduced by Sinha and Chandrakasan [41] is used. The performance 
and energy modeling techniques applied to various components of the SoC architecture 
are illustrated in Figure 10. The CMOS based co-processor involves a 32-bit pseudo 
random number generator (PRNG) [36] that is designed and synthesized into a TSMC 
0.25μm process and its energy cost is derived from HSpice simulations. In the context of 
extensions based on PCMOS, the energy cost of the co-processor is derived from HSpice 
simulations as well as chip measurements of functioning probabilistic switches realized in 
TSMC 0.25μm process. 
 

2.1.4.3   Metrics for analysis of PCMOS based implementations 
 
Consider a probabilistic application, and the three approaches to implementing it 
identified in Figures 9(b), 9(c), and 9(d)—wherein the baseline corresponds to the 
implementation shown in Figure 9(b). 

We  observe  in  a  preliminary  way  that  for  these benefits to be achieved,  significant  
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Figure 10: The host and co-processor architecture and power modeling 
 
component of the application’s overall computational effort ought to be probabilistic (and 
hence, leverage the PCMOS based co-processor). We extend this central notion to define 
the flux of an application that quantifies the “opportunity” in an application to leverage 
PCMOS technology. Intuitively, the opportunity for the overall EPP gain depends on the 
proportion of the probabilistic operations in an application and the gain per probabilistic 
operation. We have characterized the former as flux. The latter is captured through the 
technology gain metric. 
 
2.1.5 PCMOS based architectures for error tolerant applications 
 
We also showed that besides probabilistic designs targeted for inherently probabilistic 
applications, PCMOS approach also offers significant benefits in the context of error-
tolerant applications. This work was published in CASES’06 conference [17]. Examples 
for these applications are those from the signal and image processing domain, where 
hardware errors inherently reveal themselves as the signal-to-noise ratio (SNR) at the 
application level. Here, the application level quality, measured through SNR metric, can be 
traded against energy savings. 

In the context of these error-tolerant applications, we built PCMOS-based arithmetic 
primitives such as adders and multipliers; and signal processing elements such as FIR 
filters and FFTs derived from them [17]. The resulting architectures are probabilistic and 
yet they compute the end result with adequate application quality. Moreover, we 
demonstrated that it is possible to trade amount of error or equivalently the SNR 
degradation against energy through the novel approach that we refer to as biased voltage 
scaling, or BIVOS. In this approach, significant effort is expended in computing the “more” 
significant bits and as a result, they are correct with higher probability—whereas the bits 
of lower significance are largely ignored. Conceptually, this “biased” probabilistic design 
methodology favors the most-significant components of a computing primitive such as a 
filter that contribute to a critical path with longer delays, and are more likely to affect the 
quality (accuracy) of its output through bit-significance. As an example, this can be 
accomplished by boosting the voltage (Vdd) in going from the bits of lower significance to 
those of higher significance. Thus, bits of lower significance are permitted to be erroneous 
with a higher probability. 
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Figure 11: Typical design flow for (a) embedded computing systems, and (b) 
heterogeneous embedded computing systems 
 
 
2.2 High Productivity Embedded Computing Technologies 
 
We conducted a survey of heterogeneous embedded computing systems (HECS) in three 
main domains: namely, architectures, tools, and applications. Our goal was to survey 
existing technologies for HECS, and then categorize and analyze the individual domains, 
and finally, identify key bottlenecks and justify areas for tools and compiler technology 
for design and use of HECS. The results of the survey and analysis will be presented in 
Section 3.2. We will next present our methodology in analyzing the design flow for HECS. 

In a typical embedded systems design flow, human expertise is both a critical 
ingredient and a costly productivity sink in the development process. Considering the 
typical design flow proposed by Handel Jones [19] (shown in Figure 11(a)), a system is 
first designed and partitioned into hardware and software requiring knowledge of different 
specification languages for each. Both hardware and software portions must then undergo 
a second iteration of design, followed by functional testing, implementation, a second 
round of testing (and finally prototyping in the case of hardware), with separate 
development teams for each. Once the hardware and software portions are complete, they 
must be integrated using vendor provided APIs and device drivers and tested once more 
on functional, transaction level, and timing simulators before the system can move to 
production. In all stages of the design flow, a high degree of human expertise is necessary. 
For HECS, design further complicates the development process by introducing multiple 
varied targets for design (Figure 11(b)). 

To this end, we proposed automation through a parameterized architecture model to 
increasing productivity in HECS design. In this approach, an architecture is broken into 
tiles (such as a processor or memory element) and each tile has associated parameters. A 
compiler then uses the parametric description to compile a software solution for the entire 
HECS, as opposed to compiling for individual tiles with a designer performing partitioning 
and integration. By applying a compiler centric approach, human interaction in the design 
flow can be greatly reduced. 
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2.2.1 Parametric machine model 
 
A central component of the automation process is the system modeling necessary to 
realize the high level compiler (HLC), hardware aware layer (HAL), and integrated 
simulation. This requires proper “hooks” for tuning, accuracy, and flexibility at each of 
these layers. The solution lies in parametric models that abstract key performance and 
power determinants allowing characterization of architecture and application properties. 
By exposing hardware details to a hardware aware HLC, human intervention can be 
reduced in the design cycle. The result is a parametric system model where attributes are 
defined for five individual tiles (programmable, configurable, memory, interconnect, and 
application specific tiles) of a typical HECS architecture. 

The advantages of a parametric model for HECS can be summarized as follows: 
• Design space can be reduced with correct parameter selections given (known) 

constraints/limitations 
• Parametric representation is an abstract (high level) layer that can be mapped to 

compilers and the HECS design model 
• Impose design choices (to be decided by designer/human) on parameters so as to help 

reduce design complexity 
• Rule out design alternatives that do not comply with constraints 
• Identify which parameters of one tile can or cannot be matched with which 

parameters of other tiles  
   E.g., 10Gb/s data rate, box-to-box communication over 5km distance dictates 
selection of high speed SAN interconnects, such as infiniband or RapidIO 

• Parametric model can help integrated software-hardware development 
 
 
2.3 Reverse Engineering of Legacy Applications 
 
As mentioned in the Introduction, we conducted a survey to answer the question of “what 
is legacy code?” and then, we identified the hurdles of legacy code, and the current 
approaches used to deal with legacy code. In the sequel, we will briefly list answers to 
these research questions. 
 
What is legacy code? 
 

• Definition 1: A historical code that is known as working previously 

- Large, difficult, unfamiliar, complex code bases 
- Partially developed by multiple contributors 
- Code inherited from someone else 
- Incrementally developed within a long time frame 
- Different versions or upgrades exist 
- Code inherited from an older version 
- Code running on an obsolete hardware or platform 
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• Definition 2: Code without adequate automated tests 

- by Michael Feathers, Working Effectively With Legacy Code 
- “The main thing that distinguishes legacy code from non-legacy code is tests, 

or rather a lack of tests.” 
- Refers to the fact that legacy code is difficult to work with due to lack of tests 

(e.g., regression tests used to verify correct behavior, characterization tests 
used to detect and record modifications or to make sure that new 
modifications will not cause undesired consequences) 

 
• Definition 3: Code that you’re afraid of 

- by Jeremy D. Miller, Lessons Learned for Dealing with Legacy Code 
- “Legacy code is code that you’re afraid of, but is too valuable or big to toss 

away” 
- Not necessarily an old code (most of it is less than 18 months old) 
- We do not understand the code, i.e., we have very limited specifications on 

functional behavior of the code. Therefore, it is hard to debug, expand, 
improve and deploy 

- The feedback cycles are too slow (i.e., the elapsed time between writing a line 
of code and knowing that the line of code works) 

 
Hurdles of legacy code 
 

• Reliability 
- Testing and fixing bugs are hard 

• Maintainability 
- Adding features 
- New application development 
- Reuse 

• Migration 
- Portability across platforms and languages 
 

Current approaches for dealing with legacy code 
 

• Language and file format conversion tools 
Examples from Siber Systems: 
- DataReaders (converts Cobol data files to modern formats such as CSV, DBF, 
Excel, Oracle, etc.) 
- CobolTransformer (analyzes, converts, or generates Cobol source programs) 

• Tools for understanding 
- Code structure 
- Dependencies 

• Automated steps for analysis, formatting, optimizing, and porting transforms 
• Manual interaction also needed for generating an acceptable output code (e.g., 

for using automated steps efficiently and for testing resulting output code) 
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Figure 12: Example for state-of-the-art tools by Semantic Designs, Inc. 
 
 

We show one example state-of-the-art technology for dealing with legacy code in     
Figure 12. The figure illustrates a Design Maintenance System (DMS) from Semantic 
Designs, Inc. A set of tools are used for automated analysis, modification, and 
transformation. Their approach supports a variety of input and output languages, as well as 
mixed language input, so as to enable working with more than one input language domain 
simultaneously. Their approach also supports databases. Other characteristic of their 
approach is that it uses configurable transformation and analysis rules as well as output 
code formatter and optimizer. It can also generate compilable output code and it is 
scalable to thousands of input files and millions of lines of code. 

In short, the main hurdles for dealing with legacy code are due to the semantic gap 
between the user and legacy code (lack of documentation and programmer intention), lack 
of test benches, and the language that legacy code is implemented in. In the case of 
language of legacy code, problems arise due to the fact that it restricts re-use and 
enhancement of the existing framework, and also problems occurs with porting. Finally, 
one significant hurdle is, again, the absence of tools for debugging, optimization, and 
visualization. 

We will introduce our proposed approach in Chapter 3.3. 
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2.4  Software Standards and Techniques for Cognitive and Commodity 
Computing Systems 

 
2.4.1 ACIP living framework forum task 
 
The original goal of the ACIP LFF task was to develop an actionable plan for a joint effort 
of the ACIP prime contractors to develop a cross-platform software development approach 
that provides portability, high performance, and ease of use. The development approach 
was intended to interface to the Morphware Stable Interface (MSI) environment that was 
being developed under the DARPA PCA program. 

The original technical approach for this task was to develop a plan for the Living 
Framework Forum by attending all ACIP Principal Investigator (PI) meetings; seeking to 
develop an understanding of individual ACIP project software development environments; 
identifying common approaches between projects as well as areas of divergence; and 
proposing an approach for a common software environment and a plan for developing the 
required standards, specifications, benchmarks, and software. In keeping with this tasking, 
Georgia Institute of Technology (GT) personnel attended the 2nd (May 11, 2005) and 3rd 
(November 2, 2005) ACIP PI meetings. At these meetings, GT personnel discussed 
software architecture issues with representatives of each of the three prime ACIP 
development teams, as well as with other groups funded by ACIP for technology 
development projects. In addition, GT participated in the AFRL/Cornell Cognitive 
Architectures Workshop held in July 2005. GT also planned a series of individual site 
visits to each of the three prime ACIP teams. The first visit was held with the Lockheed 
Martin ACIP project team February 28, 2006, to discuss their software approaches for 
ACIP. 

The GT team met with DARPA on March 7, 2006 to discuss initial findings and plan 
activities for the remainder of ACIP phase 1. At this time, GT was directed by DARPA to 
change the task focus to participation in the ACIP Working Group (ACIP-WG) 
RECENTLY convened by DARPA. The purpose of the ACIP-WG was to develop a 
consensus on what constitutes the target ACIP cognitive domain (compact applications), 
the programming approach for ACIP systems (cognitive API), and the evaluation methods 
for ACIP systems (benchmarks and metrics). GT focused particularly on the “compact 
applications” and “kernel merging/taxonomy” sub-groups.  

GT attended and participated in the April 20 and May 25-26, 2006 ACIP-WG meetings, 
providing input to the ACIP-WG plan at those meetings. At that point, funding for this 
task was exhausted and no further activity was conducted. 

 
2.4.2 GPU SVM task 
 
The initial goal of the GPU SVM task was to develop, test, and evaluate an 
implementation of the PCA SVM API for commodity GPUs. Such devices provide a good 
example of a high performance processor that is a candidate for inclusion in 
heterogeneous systems. The task was expected to demonstrate the suitability of portable 
virtual machine (VM) layers for targeting GPU platforms, and aid in the development of 
the SVM by elucidating needed extensions to include GPUs as target devices. 

The initial technical approach for this task was to develop an SVM library for standard 
desktop workstations with commodity GPU boards. The library would allow the Reservoir 
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Labs R-Stream high level compiler (HLC) to manage memory in the main system and the 
GPU, and allow SVM kernel work functions to be overridden with openGL fragments 
written in the Cg language. Complemented by a Low Level Compiler (LLC) developed by 
Reservoir Labs that translates kernel work functions to Cg, the library would allow SVM 
programs running on targeted systems to make use of the GPU to accelerate execution. 
Once the library and LLC were developed, portions of the One Semi Automated Forces 
Objective System that are particularly suited to stream processing would be ported to the 
HLC input language, known as “Gumdrop”, by compiling them through the Morphware 
tool chain and benchmarking them with respect to various performance metrics. 
Throughout the process, in coordination with Reservoir, GT was to evaluate the 
Morphware Stable Interface (MSI) elements and make suggestions to the Morphware 
Forum regarding improvements to the MSI. The task focused specifically on clarification 
and augmentation of the SVM specification, improvements in HLC and LLC interaction 
and feedback, and approaches for platform configuration control within the MSI. 
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CHAPTER 3 
 

RESULTS 
 

3.1 Power Aware Computing Through Management of Computational 
Entropy 

 
One significant result of our work is that while the energy consumed by deterministic 
switching is never less than ( κ− t ln 2) Joules, referred to often as the “fundamental (or 
thermodynamic) limit”; in contrast, the energy consumed by an idealized probabilistic 
switch with an associated probability of error of (1−p) is lower, and can be as low as 
( κ− t ln 2p) Joules for each switching step. Here, κ  is the well-known Boltzmann’s 
constant, t is the temperature of the thermodynamic system, and ln is the natural logarithm. 
This result established that at the fundamental limit, probabilistic algorithms offer the 
potential for energy savings of κ t ln(1/p) Joules per primitive switching step. In keeping 
with traditional idealizations, our switches are not lossy since switching is always 
performed at thermal equilibrium. 

Principles of statistical thermodynamics may be applied to switches (as described in 
Chapter 2.1.1) to quantify their energy consumption, and hence the energy consumption 
(or energy complexity) of a network of such switches. To reiterate, while a switch that 
realizes the deterministic non-trivial switching function consumes at least ( κ− t ln 2) 
Joules of energy [31], a probabilistic switch can realize a probabilistic non-trivial 
switching function with ( κ− t ln 2p) Joules of energy where p is the probability parameter 
[33]. The complete definition of a probabilistic switch, the operation of a network of 
probabilistic switches and a derivation of energy complexity of such networks were 
published in IEEE Transactions on Computers in 2005 (please see [33]). 
 
3.1.1 Analytical model and the three Laws of a PCMOS inverter 
 
The analytical model of a PCMOS inverter is given in Equations (3), (4) and (5) below [43, 
1, 11, 23]. This model is derived from the output voltage distribution (see Figure 6(c)) of 
an inverter coupled with thermal noise at its output (see Figure 6(a)) and summarizes the 
relationship between the probability p, the operating voltage Vdd, and the noise magnitude 
σ. 
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Figure 13: PCMOS chip fabricated in AMI 0.5μm technology 
 

Note that in the above equations, inverf refers to the inverse of the well-known error 
function erf (see [44]) and C corresponds to the output capacitance of the inverter. As we 
demonstrated in our publications [1, 24], the error function behavior can be approximated 
using asymptotic notions from algorithm analysis in computer science. Briefly, E, the 
energy to produce a probabilistic bit (as seen in Equation 5), grows with p and the order of 
this growth dominates an exponential. Such an approximation of the above analytical 
model allows us to deduce relationships between the probability parameter p, the voltage, 
or equivalently signal magnitude Vdd, the noise magnitude σ, and finally, the energy 
consumed per switching step denoted by E. The relationships can be extrapolated over 
successive technology generations by substituting the corresponding load capacitance 
value C from the International Technology Roadmap for Semiconductors (ITRS) [20] in 
the model. 

Based on the above analytical model, we characterized the behavior of a PCMOS 
inverter through the two laws that relate the energy consumed, the associated probability 
parameter p and the noise RMS σ. Moreover, we validated the laws and the corresponding 
analytical model via HSpice simulations using 0.5μm AMI, 0.25μm TSMC, and 90nm and 
65nm IBM processes as well as via the physical measurements of PCMOS inverters 
implemented using 0.5μm AMI and 0.25μm TSMC processes that were available to us for 
fabrication. The chip photos for the 0.5μm AMI and 0.25μm TSMC processes are 
illustrated in Figures 13 and 14. 

Briefly, the first law relates the energy consumed per switching step to p, given a fixed 
amount of noise magnitude σ; whereas the second law relates the energy consumed per 
switching step to σ, given a fixed value of p. For a more complete description of the laws 
with asymptotic notions, please see our publications [1, 24]. 
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Figure 14: PCMOS chip fabricated in TSMC 0.25μm technology 
 
Law 1 For any fixed technology generation or feature size (which determines the capacitance 
C) and constant noise magnitude, the switching energy E consumed by a probabilistic switch 
grows with p. Furthermore, the order of growth of E in p is asymptotically bounded below by 
an exponential in p. 
 

As shown in Figure 15, Law 1 captures the changes in E by varying probability p 
(resulting from varying Vdd) value determined by Equation 5 of the analytical model. As 
shown in this figure, the analytically estimated values track simulated results well. Next, 
we present the second law. 
 
Law 2 For any fixed technology generation (feature size), the switching energy E consumed by 
a probabilistic switch increases quadratically with noise magnitude, whenever p remains constant. 
 

Law 2, illustrated in Figure 16, relates the quadratical changes in E to the variations in 
σ, value determined by Equation 5 of the analytical model. This quadratical relationship 
between σ, and E for a fixed value of p follows from the fact that the switching energy 
E=1/2·C·Vdd

2 is quadratically related to Vdd which is linearly dependent on σ (as shown in 
Equation 4). Moreover, it is intuitive that as σ is increased, more energy will be consumed 
to realize the same value of p. Similar to the case of Law 1, and as seen from Figure 16, 
the analytical results are matched very closely with the simulation results. 

The two laws presented above relate p and σ to energy and the relationships were 
obtained by varying the three independent parameters, namely, the operating voltage Vdd 
(referred to as the signal), the noise magnitude σ and the technology generations (e.g., 
0.25μm and 0.5μm considered in this paper). These relationships were established through 
varying the value of Vdd and the value of σ. A more succinct form of the analytical model 
that characterizes p is shown in Equation 6 below. Here, rather than specifying the values 
of  Vdd  and  σ as two independent variables, they are presented as a single ratio, which we 
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Figure 15: Law 1 validated over 0.5μm and 0.25μm processes. 
 
 
 
 
 
 
 

 
 
 

Figure 16: Law 2 validated over 0.5μm and 0.25μm processes. 
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Figure 17: Validation of invariance law of PCMOS through simulations and measurements. 
The invariant behavior of p-NSR relationship is shown for four technology generations, 
90nm, 65nm, 0.25μm and 0.5μm, based on HSpice simulations as well as physical 
measurements of PCMOS inverters fabricated using 0.25μm and 0.5μm processes. 
 
refer to as the Noise-to-Signal Ratio (NSR). Given that 2 2 (2 1)ddV inver f pσ• • •= − , from 
Equation (4), we can express NSR as follows. 
 

 
 

Because of the fact that NSR captures the two independent dimensions (Vdd and σ) into 
a single dimension, we will refer the third law as the “unifying” law of a probabilistic 
inverter stated as in below. 
 
Law 3 Independent of the technology generations (feature size), NSR uniquely determines the 
probability parameter p. 
 
This form of the model of a probabilistic inverter is very interesting for the following 
reasons. First, it allows us to establish a succinct relationship between the independent 
parameters and the probability parameter p in a manner that does not depend on the CMOS 
technology generations; for example, there is no dependence on the capacitance C, which 
is typically determined by the feature size. Secondly, it is possible to simultaneously 
illustrate the invariance across technology generations, and easily estimate p given an NSR 
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value or vice versa. Figure 17 shows the NSR and p relationship. As seen from the figure, 
the data points from all the simulated processes (90nm, 65nm, 0.25μm, and 0.5μm) and 
from the measured processes (0.25μm and 0.5μm) perfectly overlap with each other and 
match the results of the analytical model. This validates the invariance law of PCMOS and 
confirms the NSR as a figure-of-merit that uniquely determines p independent from the 
technology generations. 
 
3.1.2 Analysis and optimization of energy, performance, and probability of PCMOS 
circuits 
 
We showed the design trade-offs between energy, performance, and p of PCMOS gates 
using analytical models of energy, propagation delay, and p. We have considered Vdd and 
Vth as our design variables and found the values of Vdd and Vth for optimal energy-delay 
product (EDP) and p under given constraints on p, performance, and EDP. We have 
observed that operating a PCMOS gate at lower supply voltages is more preferable to 
minimize its EDP. By contrast, for maximizing the p of a PCMOS gate, operating the gate at 
higher supply voltages is preferable. We observed that the optimal values of Vdd and Vth 
are contingent upon the constraints imposed by the application as well as the models used 
for energy, delay, and p. We also performed circuit simulations to validate our analytical 
models. From the simulations we have observed that the shapes of EDP surfaces and 
location of the optimal EDP point are dependent on the models used for energy, delay, and 
p. Our analysis can be helpful in circuit design for applications with specific p, 
performance, and EDP requirements. 

We also included an analysis of the impact of parameter variations in threshold voltage, 
temperature, and supply voltage on EDP, performance, and p of PCMOS gates as well as on 
optimal values of EDP and p. We found that accurately estimating the variations in 
temperature, threshold voltage, and supply voltage is important for accurately optimizing 
the EDP and p of PCMOS gates. Furthermore, we briefly discussed the effect of the noise on 
the energy consumption of a PCMOS gate, as well as the effect of the noise duration on the 
p of a PCMOS gate. Noise causing spurious switchings may increase the energy consumed 
by a PCMOS gate. The ratio of the noise duration to the propagation delay of the gate is 
important in determining the p of a PCMOS gate. If the noise duration is smaller than the 
propagation delay of the gate, then high frequency components of the noise are filtered by 
the gate. Hence, we conclude that probability and energy models of probabilistic gates 
should consider these issues to accomplish accurate optimizations. 
 
3.1.3 Results and analysis for probabilistic system on-a-chip (PSoC) architectures 
 
To evaluate the efficiency of PSoC architectures, we investigated applications from the 
cognitive and embedded domain which embody probabilistic behaviors. Probabilistic 
algorithms are those in which each step, upon repeated execution with the same inputs, 
could have several possible outcomes, where each outcome is associated with a 
probability parameter. In particular, the applications we considered are based on Bayesian 
inference [39, 37, 3], Probabilistic Cellular Automata [14], Random Neural Networks [16, 
15] and Hyper Encryption [13]. For brevity, these algorithms will be referred to as BN, 
PbCA, RNN and HE respectively. Common to these applications (and to almost all 
probabilistic algorithms) is the notion of a core probabilistic step with its associated 
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probability parameter. An abstract model of a core probabilistic step is a probabilistic truth 
table. Intuitively, realizing probabilistic truth tables using probabilistic switches is 
inherently more efficient with PCMOS switches than with conventional (deterministic) 
CMOS switches. This is because of the inherent probabilistic behavior of the PCMOS 
switches. When compared to a baseline implementation using software executing on a 
StrongARM SA-1100, the gain of a PCMOS based PSoC is summarized in Table 1. In 
addition, when the baseline is a custom ASIC realization (host) coupled to a functionally 
identical CMOS based coprocessor, in the context of the HE and PbCA applications, the 
gains are increased to 9.38 and 561, respectively. Thus, for applications which can harness 
probabilistic behavior, PSoC architectures based on PCMOS technology yield several orders 
of magnitude improvements over conventional (deterministic) CMOS based 
implementations. For a detailed explanation of the architectures, a description of the 
applications, and results, please see our publications [7, 9]: 
 

• Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar Korkmaz, 
Krishna V. Palem, and Balasubramanian Seshasayee, “Ultra Efficient Embedded SOC 
Architectures based on Probabilistic CMOS Technology,” Proceedings of the 9th Design  
Automation and Test in Europe (DATE), March 2006, pp. 1110–1115. 

• Lakshmi N. Chakrapani, Pinar Korkmaz, Bilge E. S. Akgul, and Krishna V. Palem, 
“Probabilistic system-on-a-chip architectures”, ACM Transactions on Design Automation 
of Electronic Systems (TODAES), August 2007, Vol. 12, Issue 3. 
 

 
Table 1: Application level maximum and minimum EPP gains of PCMOS over the baseline 
implementation where the implementation I has a StrongARM SA-1100 host and a PCMOS 
based co-processor 
 
3.1.4 BIVOS and DSP results 
 
To compare the quality of the solution using our novel BIVOS design methodology with 
the conventional voltage scaling approach, we consider Figure 18—here, the voltage is 
lowered uniformly across all of the bit positions of the arithmetic primitives. The 
associated energy savings and the associated image quality for both the H.264 application 
(using a PCMOS based fir element) and the synthetic aperture radar (SAR) imaging (using a 
PCMOS based FFT element) are illustrated in Table 2. It is easily seen from Table 2 that the 
quality of the solution is significantly worse in the case of conventional voltage scaling 
when compare to our novel approach (Figure 18(b)), wherein there is (almost) not 
discernible visual degradation and is comparable to the original image computed using 
entirely conventional digital hardware with much higher energy consumption. More 
details of this work is published and presented at CASES’06 conference [17]. This work 
on probabilistic arithmetic and BIVOS approach appears in our patent application filed on 
February 2006 [34]. 
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Figure 18: (a) Conventional digital design with very high (nominal) voltage levels. (b) 
Our probabilistic, BIVOS approach with significantly lower energy consumed and leasing 
to minimal degradation of the quality of the image. (c) Conventional voltage scaling that 
achieves the same level of energy savings as (b) but with significantly lower image quality. 

 
 
 
 
 
 
 

 
 
Table 2:  Comparing the quality of the output images achieved through the novel BIVOS 
based PCMOS to that achieved through conventional voltage scaling and the corresponding 
energy savings of both approaches when compared to nominal operation at full-scale Vdd. 
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Figure 19: A canonical heterogeneous computing system 

 
 
3.2 High Productivity Embedded Computing Technologies 
 
We have identified the shortcomings in development and productivity of heterogeneous 
embedded systems design; and proposed solutions and research directions to remedy these 
shortcomings. Here, we will present the results of our survey, introduce the productivity 
challenges and need for tools in design and use of HECS, and show our proposed compiler 
centric approach to massively improved productivity. 
 
3.2.1 Survey of HECS 
 
A canonical heterogeneous computing system is shown in Figure 19. This example 
constitutes a military software-defined radio with a variety of computing elements and 
subsystems including antenna, protocol management, signal processing, etc. Such an HECS 
involves three main domains: architectures that comprise the physical hardware 
components, tools that are used for design and development of an HECS, and applications. 
Each domain has its own attributes, metrics, and classifications. We will next present the 
results of our survey for each domain and their attributes. 
 

3.2.1.1   Architectures 
 
An HECS architecture platform, that is composed of programmable tile(s), memory tile(s), 
application specific tile(s), configurable tile(s), and interconnects, is shown in Figure 20. 
A platform has a set of attributes used to analyze and classify a platform and to interrelate 
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Figure 20: Model for heterogeneous embedded system architectures 
 
an architecture platform to other HECS domains (such as tools and applications). The 
definition of attributes for individual tiles plays a critical role in parameterizing a platform 
to cope with the rich design space of a typical HECS.  

These (architecture) platform attributes are performance (measured in GFlops), power 
consumption (measured in Watts), performance per power – reflecting efficiency – 
(measured in terms of GFlops per Watt), configurability level (measured by the number of 
configurable elements/tiles), parallelism level (measured in the number of computing 
resources and corresponding silicon area), and scalability level (measured in terms of 
interconnect types and the number of modules that can fit into a box or board). Other 
attributes measured qualitatively can be listed as follows: Ease of redesign, reusability 
depends on scalability and configurability of all the tiles; application domain specific 
attribute as defined by applications and drive use of application specific accelerators; real-
time attribute depends on performance and application-domain specification; and security 
depends on level of re-configurability and middleware/OS support. Some attributes are 
interrelated to others: e.g., performance depends on parallelism and power consumption, 
whereas redesign and reusability depend on configurability and scalability. 

The attributes also affect the choice and use of tools. Moreover, each platform tile also 
has its own tile-specific attributes that are used to parameterize an HECS architecture (see 
Section 2.2.1 for a discussion on our parametric machine model of an HECS). The 
corresponding attributes of one example tile (programmable tile) of a platform and how 
they relate to platform attributes are respectively shown in Figures 21 and 22. Similarly, 
we identified attributes to parameterize interconnects and memories as well. 

These attributes help us to compare and relate platforms. Among various platforms that 
we studied in our survey, we chose five examples to illustrate in Figure 23. 

The specifications of our example platforms are listed as follows: 
 

• Wireless IP phone evaluation platform from Renesas 
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Figure 21: Attributes of a programmable tile 
 

 
 

 

 
 
 

Figure 22: Relation between programmable tile attributes and platform attributes 
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Figure 23: Comparing platforms with their quantifiable attributes 

 
 

One Reduced Instruction Set Computer (RISC) processor from Renesas, one Field 
Programmable Gate Array (FPGA) from Quicklogic 

Low power, configurable, real-time 

• SMT339 High speed image processing module from Sundance 

One TIDM642 DSP, Xilinx FPGA including embedded PowerPC cores 

High performance, reconfigurable, scalable, real-time 

• CBEA (Cell Broadband Engine Architecture) 

Eight Synergistic Processor Elements (SPEs), One Power Processor Element    
(PPE), high speed Element Interconnect Bus (EIB) interconnect 
High performance, parallel, scalable, real-time 

• Echotek Series ECV4-4 digital receivers from Mercury 

Eight Xilinx and Altera FPGAs 
Reconfigurable, application domain specific, real-time 

• High definition (HD) encoder from Scientific Atlanta 

Four TIC6415 DSPs, multiple (up to 20) Xilinx FPGAs, multi-gigabit links 
High performance, parallel, scalable, reconfigurable, real-time 

As observed from these examples, a variety of processors, FPGAs and ASICs exist on 
the same platform. The lessons learned from our survey can be summarized as follows: 
Given the complexity and heterogeneity of a typical HECS, application partitioning 
becomes extremely critical both in terms of design and use of HECS. Performance analysis 
will help to perform efficient partitioning to overcome bridging/bottleneck problems. We 
also observe that most of the DSP functionality migrates to FPGAs, which implies need 
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for tools: Existing DSP codes written in C need to move to hardware description language 
(HDL), hence new design flow emerges, and so does need for DSP-FPGA codesign tools. 
Moreover, advanced parallel architecture design (e.g., in CBEA) increases programmers 
role in optimizing code to efficiently exploit architecture features and program so as to 
parallelize applications. We also see dedicated processors (e.g., PPE in CBEA) running 
operating system (OS) and other control intensive programs, specialized architecture 
features, and the need for highly optimized software (math, DSP, I/O) libraries. On the 
other hand, these HECS platforms include multi-target, heterogeneous “malleable” and 
“non-malleable” elements. This necessitates compilers and software development tools to 
partition, parallelize, and map applications to hardware, target specific optimizations for 
performance and power, improve and automate code portability. Also, modeling tools are 
needed to enable integrated hardware-software development, verification and debugging, 
and faster time-to-market. Finally, a standardization for cross-compatibility between tools 
is needed. 

 
3.2.1.2   Tools 

 
We can understand the importance of tools in HECS design and use by recalling the HECS 
design flow shown in Figure 24. After system design, partitioning design into hardware 
components involves two main paths: hardware development flow for malleable hardware 
and hardware development flow for non-malleable hardware. In existing technologies for 
HECS design and use, non-malleable hardware development has low hardware design 
productivity and high hardware design cost, wherein non-recurring engineering costs (cost 
of design and implementation) emerge. However, and as expected, the development for 
non-malleable hardware will constitute a lower software/configuration cost (relative to 
hardware design) and the hardware design (relative to software implementation) cost is 
low. As for the malleable hardware development, however, hardware design (relative to 
software implementation) cost is low. In the software development context, on the other 
hand, we observe low programming/configuration productivity and high programming 
cost, wherein recurring engineering cost (cost of programming/configuring) emerges. 

We categorized heterogeneous systems into three types of systems that are being 
designed: Heterogeneous platform (type 1) with multiple, heterogeneous boards and 
interconnects; heterogeneous system on a chip (HSoC) plus FPGA (type 2); and HSoC 
(type 3). Among these types, our survey results show that tools for heterogeneous 
platforms (type 1) do not widely exist and that tools for heterogeneous platforms depend 
on significant human intervention and thus, automation does not widely exist. For HSoCs 
(type 3), on the other hand, more tools are available, and designs including a simple 
processor plus an accelerator dominate.  

We distinguish tools into five different types: languages, application libraries and 
runtime/OS, compilers, simulation/performance modeling tools, and debuggers. Moreover, 
we relate the activities of each of these types of tools for software development in typical 
HECS design flow in six main thrusts listed below: 

 
• Partitioning 

Partition applications into parts which show affinity towards different 
heterogeneous components 

 

Load balancing 
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Figure 24: Key costs of HECS design flow 
 

• Optimization 
Optimize each partition 

• Integration  
Tools and abstractions to encapsulate communication/synchronization between 

components 
• Verification 

Debugging and simulation 
• Re-use 

Commonly required functionality 
• Constraints 

A way of expressing and achieving constraints 
 

The tool activities for languages are shown in Figure 25. Languages help with 
partitioning by using explicit threading, which is in current technologies constitutes low 
productivity, very difficult, no automatic load balancing. Re-use is typically enabled by 
language design; for example, “intra-application” re-use is performed via object oriented 
languages, generics, and templates. Language capability to express constraints, on the 
other hand, is still in research phase. 

As for the application libraries and runtime/OS tools, the current tools for integration, 
re-use and constraints are reasonably mature, whereas the optimization activity still needs 
improvement, as optimization is typically performed by hand. In case of compilers, 
automatic compiler-based partitioning is still under research, and mapping onto FPGAs 
and course-grained reconfigurable architectures (CGRA) are just beginning to be explored  
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Figure 25: Tools and their activities (this example relates languages to activities) 
 
in the state-of-the-art. While component-specific optimization is well understood (e.g., 
loop transformations, optimizations for parallelism, machine specific optimizations), very 
few optimizations are in place for heterogeneous platforms (type 1). Simulation and 
performance modeling, on the other hand, is typically used for verification: our survey 
results indicate that simulation time is still an issue, and simulations are performed at 
several levels. Fast simulation and performance modeling is desired for optimization 
purposes, however, this cannot to be done in current technologies, as simulation time and 
re-targeting the simulator are main problems. 

In summary, designs at this level are very much based on designer experience, thus 
ingenuity instead of intelligent tool-based design is essential. We observe that language 
level research is needed to specify constraints, enable partitioning and optimization; 
libraries are needed for automatic specialization and optimization–although operating 
systems are relatively mature; compilers for automatic partitioning (for satisfying 
constraints and transparently leveraging libraries) are desired; and fast simulation and 
performance modeling are also desired to enable design space exploration as well as 
verification of HECS design and use. 

 
3.2.1.3   Applications 

 
In our survey of HECS applications, we distinguished applications into five domains: real-
time control applications, remote surveillance, home electronics, mobile consumer 
electronics, and high performance applications. These five domains are shown in Figure 
26. Below, we list the behavior of each domain of applications with examples. 
 

1. Real-time Control Applications: 
Behavior: 

• Catastrophic Failure 

• Safety Critical 

• Hard Timing Deadlines 

• Real-time Operation 

• Operational Degradation 

• Components Wear Over Time 
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Figure 26: Application domains 
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Examples: 
• Automotive 

Volvo S80 
K. Hanninen, J. Maki-Turja, and M. Nolin. Present and future requirements in 
developing industrial embedded real time systems. In Proc. of the 13th Annual 
IEEE International Symposium and Workshop on Engineering of Computer   
Based Systems (ECBS06), pages 139-150, 2006. 

• Industrial 
F. Jammes and H. Smit. Service-oriented paradigms in industrial automation. 
IEEE Transactions on Industrial Informatics, 1(1):62 70, Feb. 2005. 
 

2. Remote Surveillance Applications: 
Behavior: 
• Remote Operation (limited bandwidth, difficult to service) 
• Soft Real-Time Deadlines 
• Constrained Power 
• Constrained Size and Weight (varies by application) 

Examples: 
• Fixed Point Surveillance 

Smart Cam (W. Wolf, Princeton University) 
• UAVs 

Aersonde (Aerosounde Proprietary Ltd.): small unmanned surveillance plane 
     with >30 hrs. endurance 

Carolo T200 (Institute of Aerospace Systems, Technical University of Braun- 
schweig, Germany): micro UAV, takeoff weight 5 kg 

• Rovers 
Mars Exploration Rovers (JPL): The Spirit and Opportunity rovers 
 

3. Home Electronics Applications: 
Behavior: 
• Soft Timing Deadlines (Real-time Operation) 
• Loose Size, Weight, & Power Limitations (only driven by economics of solution) 
• Ease of Use Critical 
Examples: 
• Multimedia Devices 

 Embedded Software Drive the Digital Home, by C. Hung and R. Schmitt 
(www.embedded-computing.com/articles/id/?248) 

• Media Connector (Digital Deck) 
Video Game Consoles 
PlayStation 3 (Sony) 

http://www.embedded-computing.com/articles/id/?248
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4. Mobile Consumer Electronics Applications: 
Behavior: 
• High Performance with Extreme Size & Weight Limitations 
• Constrained Power 

Examples: 
• Cellular 

Razr (Motorola) 
• Automotive Entertainment 
• Portable Game Consoles 

IPod (Apple) 
 
5. High Performance Applications: 

Behavior: 
• Heat, Size & Power Sensitive 

Data center scale operation limits heat removal, power distribution, and 
overall size 

• Extreme Computational Loading 
Examples: 
• Supercomputing 

IBM Blue Gene/L (IBM): Fundamental science simulation 
• Head End 

AVC HD Encoder (Scientific Atlanta): Real-time HD encoder for HDTV 
broadcast 

 
As a result of our survey analysis, we showed that higher computational complexity 

correlates with higher platform power, and that higher computational complexity inversely 
correlates with platform mobility. Please see Figures 27 and 28. 

Home electronics applications are primarily driven by the economics of the solution. 
Real time control applications are generally employed on platforms with ample power for 
electronics. Size is only constrained due to the sheer volume of the electronic systems 
employed. In remote surveillance, application size is a concern limiting mobility; however, 
the overall size of the platform requires significant power consumption to provide 
mobility and allows ample power for electronics. Mobile consumer electronics application 
platforms require tight size constraints allowing for extremely limited power capacity. 
Due to the solution scale required to meet the extreme computational demands, high 
performance benefits greatly from reduced power consumption and size. 

As far as application development is concerned, tools are needed for a variety of 
reasons: Video and audio processing requirements in home electronics typically leads to 
multiprocessor solutions facilitating the need for tools for code mapping to each processor. 
Extreme computational loading seen in the high performance class coupled with limited 
power, heat, and volume budgets necessitates performance analysis tools. Remote 
operation and audio/video processing requirements seen in remote surveillance drive the 
need for multiple processors and low power operation creating a need for code mapping 
and performance analysis. High levels of heterogeneity and critical system availability in 
real   time  control  combine  to  make  validation  both  difficult   and  essential.    Finally, 
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Figure 27: Higher computational complexity correlates with higher platform power 
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Figure 28: Higher computational complexity inversely correlates with platform mobility 
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consumer demands for small form factor solutions with extended battery life in mobile 
consumer electronics makes performance analysis tools crucial. 
 
3.2.2 Productivity challenges and a compiler centric approach 
 
The productivity challenges stemming from HECS architectures and their implications for 
tools and automation can be summarized as follows. Design space for HECS architecture 
platforms is very rich. Attributes for programmable tiles constitute six categories and 
around twenty different attributes; attributes for configurable tiles constitute five 
categories and around twenty different attributes; attributes for interconnect constitute 
three categories and around ten different attributes. As an example, the example platforms 
from our survey include up to 24 different chips, each including a variety of specialized 
hardware elements, cores, accelerators, interconnects, etc., which is a huge design space. 
Under such complexity, there is also a need for meeting (application) constraints (in terms 
of power, performance, etc). As for our survey examples, power ranges from 50mW to 
450W, performance ranges from 0.1GFlops to 400GFlops, power-per-performance ranges 
from 0.7GFlops/W to 3GFlops/W, interconnect data rate ranges from 1 MB/s to 100 GB/s, 
plus additional requirements exists due to configurability, flexibility, etc.  

Given the aforementioned design complexity and huge design space, the existing 
technologies offer very limited tools and automation. Problems due to the fact that variety 
of design flows exist and that integration and development depend on human experience 
and intervention, verification and integrated hardware and software development become 
extremely difficult. As a result, design and use of HECS are exposed to high non-recurring 
engineering (NRE) costs, low productivity, and high risk. Thus, productivity oriented 
HECS-design flow is needed. Overall, application complexity and architectural richness 
combine to increase design/implementation effort, thus, reduced productivity in 
development. We summarize the hurdles of productivity in Figure 29. 

As a solution to aforementioned problems, we proposed a compiler centric approach to 
massively improved productivity. Our approach is illustrated in Figure 30. Specifically, 
our approach proposes use of telescoping languages and modeling at the design stage; 
cognitive adaptation, compiler optimization, and modeling at the partition stage; and again 
modeling at the compilation and integration stage. Specific list of challenges as well as our 
proposed approaches to overcome each challenge are shown in Table 3. 
 
 
3.3 Reverse Engineering of Legacy Applications 
 
To highlight a few, sources for legacy code include porting of software into a new/updated 
platform or into a new language, web-based Java applications (e.g., unified modeling 
language (UML) modeling and reverse engineering Java applications) and code transitions 
among third party vendors (e.g., outsourcing). As far as the languages concerned, the 
examples are C, C++, Java, C#, C++/CLI, VB, FORTRAN, COBOL, Smalltalk and Lisp. 
Below, we list some legacy system migration examples (taken from [2]). 
 

• JOVIAL73 on MIL1750 → C on PowerPC 
Military avionics + weapons management 
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Figure 29: Hurdles to productivity 
 
 

 
 

Table 3: Constructive plan summary for implementing our proposed approach 
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Figure 30: A compiler centric approach to massively improved productivity 
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COBOL74 + IDMS → COBOL85 + SQL 
UNISYS 1100 retirement; must move data, too! 

• K&R C + custom RTOS → ANSI C + VXworks 
Microprocessor modernization 

• Clipper + green screen → Delphi + GUI 
Legacy 3GL data processing language 

• MODCOMP ASM → C 
Defense radar modernization; 12 computer languages 

• Verilog → VHDL 
Reuse of chip design in new context 

 
The main problem statement of dealing with legacy code can be summarized as follows. 

We are given a large extant code base of very useful code, however, it is not understood 
by the people currently developing it (e.g., developing new applications and/or working 
with new platforms). Thus, we need to help innovate tools and technologies to generate 
well-understood high level versions of the code through reverse engineering. This can be 
realized through semiautomatic generation of high level code and use of cognitive 
techniques. We also need innovative tools and technologies to enable new versions of the 
code to be used by the current set of users and developers without any productivity loss. 

As a solution to the aforementioned problems, we proposed a semantic amplification 
through cognitive techniques. This bridges semantic gap through limited human 
intervention. Human inserted cues are utilized by compiler along with analysis, such that, 
the visual representation of code is produced, and programmer intention is preserved. One 
other important technique of our approach is to use syntax based methods–tree pattern 
matching based syntax-driven translation methods–so as to translate program to a higher 
level language (e.g., Matlab). Finally, our approach uses probabilistic modeling and 
computational learning: example approaches are statistical approaches and neural 
networks based cognitive techniques for pattern recognition (akin to approaches for 
natural language translation). 
 
 
3.4 Software Standards and Techniques for Cognitive and Commodity 

Computing Systems 
 
3.4.1 GPU SVM Task 
 
In accordance with the plan outlined in Chapter 2.4.2, GT developed a library 
implementation of the SVM for GPU, in coordination with Reservoir Labs. In addition, 
GT assisted Reservoir with the development of the required LLC. Preliminary findings 
were published at the High Performance Embedded Computing Workshop at Lincoln 
Laboratory in September [30], and also reported to the Morphware Forum at a regular 
Forum meeting Nov. 30 - Dec. 1, 2005. 

Subsequent to the initial development and reporting, GT continued to tune and 
benchmark the SVM-GPU library. In addition, GT participated in outreach activities with 
the two major vendors of GPUs. These activities were a working group meeting on the 
topic of “Programmability for General Purpose Computing on GPUs”, hosted by nVidia, 
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and a meeting with ATI Technology’s compiler group to discuss GPU programmability 
issues. In mid-2006, an interferometric (3D) synthetic aperture radar IFSAR phase 
unwrapper experiment was added to the GPU tasking as a limited experiment on a code of 
interest in DoD sensor processing communities. The intent was to develop a GPU-
appropriate algorithm and benchmark it in “native” C and CPU (Cg + OpenGL) 
implementations. This algorithm could then be converted to the GPU SVM API to provide 
additional testing and evaluation of that API. A specific least-squares algorithm was 
identified and prototyped in MATLAB. Initial implementations in C on a conventional 
uniprocessor and on the GPU were developed and benchmarked. GPU speedups of 
approximately 35x (depending on problems size) were obtained relative to uniprocessor C 
code. These results were documented in a paper published and presented at the IEEE 
Radar 2007 Conference in April, 2007 [22]. 
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CHAPTER 4 
 

CONCLUSIONS 
 

4.1 Power Aware Computing Task 
 
As device scaling continues into nanometer regime, noise is emerging as an increasing 
threat to reliable computing. In addition, energy consumption and the accompanying heat 
dissipation also emerge as a limiting factor. In this work, we have introduced PCMOS as a 
novel technology to overcome both of these hurdles. A thorough characterization of 
PCMOS behavior and the utilization of noise in a controlled manner enables us to design 
architectural building blocks. Using such architectures which leverage PCMOS technology, 
we have demonstrated the impact of PCMOS at the application level. Several applications 
from the embedded domain, ranging from the domain of security to speech and image 
processing, are based on probabilistic and error-tolerant algorithms and can readily 
leverage PCMOS technology. Having established its utility in the context of probabilistic 
architectures, we also studied impact of voltage overscaling and hence associated 
propagation delays on probabilistic behavior for arithmetic units (adders and multipliers) 
and DSP primitives. Our work to this end also constitutes a basis to encompass parameter 
variations which we envision to be treated as another source of noise and hence 
probabilistic behavior. 
 
 
4.2 HECS Task 
 
Ever increasing computational power necessitates increases in design productivity to 
combat the associated rising product development costs. A parameterized, modular HECS 
architecture platform definition, together with a compiler centric approach helps automate 
the development cycle for HECS design. By exposing architectural details, through a 
parametric model, a compiler can perform system level software design alleviating the 
need for a human to handle the complex task of software partitioning and integration. The 
resulting improvements in productivity will serve to drive HECS development costs down. 
 
 
4.3 Reverse Engineering Task 
 
One effective approach would be to use human guided cognitive methods to extract an 
efficient and feasible grammar and associated set of production rules such that a language 
representation can in turn be raised to a more abstract application specification efficiently. 
Current art does not support any automation; thus, any form of automation is intended to 
yield one to two orders of magnitude of improvements to productivity at least. 
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LIST OF ACRONYMS 
 
 
 

ACIP - Architectures for Cognitive Information Processing 
AMI - American Microsystems Incorporated 
API - Application Programming Interface 
ASIC - Application-Specific Integrated Circuit 
BIVOS - Biased Voltage Scaling 
BN - Bayesian Network 
CBEA - Cell Broadband Engine Architecture 
CGRA - Course-Grained Reconfigurable Architectures 
CMOS - Complementary Metal Oxide Semiconductor 
DSP - Digital Signal Processing 
EPP - Energy-Performance Product 
EDP - Energy-Delay Product 
EIB - Element Interconnect Bus 
FFT - Fast Fourier Transform 
FIR - Finite Impulse Response 
FPGA - Field Programmable Gate Array 
GT - Georgia Institute of Technology 
GPU - Graphical Processing Units 
HAL - Hardware Aware Layer 
HD - High Definition 
HDL - Hardware Description Language 
HE - Hyper Encryption 
HECS - Heterogeneous Embedded Computing System 
HLC - Higher Level Compiler 
HSoC - Heterogeneous System on a Chip 
IFSAR - Interferometric (3D) Synthetic Aperture Radar 
ITRS - International Technology Roadmap for Semiconductors 
LFF - Living Framework Forum 
LLC - Low Level Compiler 
MIPS - Microprocessor without Interlocked Pipeline Stages 
MSI - Morphable Stable Interface 
NRE - Non-Recurring Engineering 
NSR - Noise to Signal Ratio 
OS - Operating System 
PBITs - Probabilistic bits 
PCA - Polymorphous Computing Architectures 
PbCA - Probabilistic Cellular Automata 
PCMOS - Probabilistic CMOS 
PPE - Power Processor Element 
PRNG - Pseudo-Random Number Generator 
PSOC - Probabilistic System-On-a-Chip 
RISC - Reduced Instruction Set Computer 
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RNN - Random Neural Networks 
SAR - Synthetic Aperture Radar 
SNR - Signal to Noise Ratio 
SPE - Synergistic Processing Elements 
SVM - Stream Virtual Machine 
TSMC - Taiwan Semiconductor Manufacturing Company 
UML - Unified Modeling Language 
VHDL - Very-high-speed integrated circuits Hardware Description Language 
VM - Virtual Machine 
 
 
 
 
 
 
 




